Genomics/MetaGenomics Populations/Communities/Ecosystems

Patrik D'haeseleer Comp. Scientist / Systems Biology LLNL, JBEI

Current Area of Research Interest

- Targeted discovery of enzymes and pathways
- Inference of metabolic networks and phenotypes from 16S, and noisy/incomplete metagenome data

Reconstruction of the Acid Mine Drainage community. Metabolic networks for the five dominant species were drawn proportional to their metagenome coverage

Challenges that May be Addressed with Advanced Comp. & Math Capabilities

- Binning by probabilistic reconstruction of phylogeny of each metagenomic read Already feasible for marker genes, or from oligonucleotide patterns in long sequences
- Bayesian reconstruction of metabolic network for each member of the community
 Based on uncertain binning, <1X coverage, and uncertain enzyme annotations
- Agent-based model of interacting metabolic networks
 Simulate 1000's of microbial cells, each with its own metabolic flux model

Opportunities in Biology at the Extreme Scale of Computing

Systems biology on a planetary scale – some grand challenges Ed DeLong

- Integrating measurement and modeling across multiple levels of biological structural organization
- Integrating measurement and modeling of biological process across appropriate spatial and temporal scales
- Integrating above biological structure/process at various scales with dynamic physical, chemical, & geological models

Systems biology on a planetary scale – some grand challenges Ed DeLong

- Integrating measurement and modeling across multiple levels of biological structural organization
- Integrating measurement and modeling of biological process across appropriate spatial and temporal scales
- Integrating above biological structure/process at various scales with dynamic physical, chemical, & geological models

Populations, Communities, Ecosystems, and Evolutionary Dynamics: Genomics and Metagenomics

Wu Feng, Associate Professor Virginia Tech

http://www.mpiblast.org/
http://synergy.cs.vt.edu/

- High-Performance Biocomputing
 - ✓ Sequence Alignment
 - ✓ Framework for Automatic Parallelization of Biological Codes

✓ Biomolecular Electrostatic Potential → Long-Range Interactions (w/ A. Onufriev)

Challenges Addressed with Advanced Computing & Mathematics Capabilities

- Sequence databases now growing at a rate faster than we can compute on them.
 - ✓ Accelerate algorithms in hardware & software, automate code generation, simplify maintenance
- Finding "Missing Genes in Genomes"
 - ✓ More complete picture of organism capability → help control disease, understand its metabolism to improve efficiency, improve knowledge of protein-coding genes in nature (e.g., new enzymes to more efficiently convert sugar to fuel w/ P. Zhang)

Populations, Communities, Ecosystems and Evolutionary Dynamics

Wolfgang Fink, Ph.D. Senior Researcher Caltech/JPL/NASA

Current Area of Research Interest [Include graphic]

- Optimization of Neuroprosthetic Devices (e.g., Artificial Retina)
- Autonomous Exploration Systems
- Image Processing and Analysis
- Stochastic Optimization Frameworks

- De Novo Protein Design
- Drug Design
- Chemical Reaction Networks
- Cellular Pathways

Genomics and Metagenomics

George M. Garrity
Professor, Michigan State University

Current Area of Research Interest

- Systematics of Bacteria and Archaea
- Semantics and biological nomenclature
- Mining scientific, technical, regulatory and patent literature
- Metadata standards development and application

- Extreme-scale phylogenetic/phylogenomic modeling of *Bacteria* and *Archaea*
- Extreme-scale clustering and visualization of natural patterns in biological data
- Improved standards for interoperability and exchange of data

Structural systems biology: integrated structural and functional view of protein networks

- A group of proteins with limited number of topologies is responsible for a vast majority of functions (core machinery of life) and we are almost done cataloging their structures
- Using tools of distant homology recognition we can add at least low resolution structural information to functional networks of proteins (here, central metabolic network of thermophilic bacteria, *T. maritima*)
- Exploring synergy between function- and structure- centric view of the network we can gain new insights into the evolution, internal structure and other aspects of such networks

Populations, Communities, Ecosystems

and Evolutionary Dynamics: Genomics and Metagenomics

Elebeoba May, PhD Principal Member Technical Staff Sandia National Laboratories

Current Area of Research Interest

- Multiscale models of microbial communities and phenomena
- Modeling and simulation of host-pathogen interactions in infection and immunity
- Modeling and control of molecular communication

- Accurate implementation of multiscale, spatio-temporal models of molecular systems and microbial communities (multi-platform simulation, large-scale data communication)
- Large-scale parameter estimation and optimization
- Large-scale reachability for analysis and ultimately engineering of microbial systems
- Multiscale visualization of biological systems and biological information

Folker Meyers Slide

The problem: Sequencing outpaces Moore's law

- Computational analysis of metagenomic data is and will be a very big challenge
- Bioinformatics cost is purely BLAST, reality is even worse
- Cost are in Amazon EC2 (from Wilkening et al, IEEE Cluster09)

Genomics and Metagenomics:

Populations, Communities, Ecosystems and Evolutionary Dynamics

Ken Nealson, Professor U. S. Cal. - Earth Science J.C. Venter Inst. -Biology

- Environmental Microbiology
- Extracellular electron transport
- Energy flow in communities
- Corrosion

Challenges that May be Addressed with Advanced Computing and Mathematics Capabilities

- Defining the mechanism(s) of biotic and abiotic corrosion
- Understanding energy flow and how it relates to corrosion
- Designing strategies for ameliorating or reversing corrosion

DOE/Office of Science Opportunities at Extreme Scale of Computing August 17-19,2009

Genomics and Metagenomics

Chris Oehmen Sr. Research Scientist Pacific Northwest National Lab

High performance sequence analysis- throughput and complexity

- next-gen sequence data (reads →genes, genomes; experimental system)
- multiple genomes (eg. ortholog maps across all genomes)
- communities (predicting functions, pathways)
- visualization, hypothesis detection

- community function models from pathway predictions—natural and engineered systems for energy and climate *but...*
 - How do you assemble a metagenome? (graph problem needing TB's memory)
 - What is the minimal genome? (network of networks problem with millions of nodes)
 - How do we find a hypothesis in all this data?

- Genomes
- Sequence comparison
- Genome assembly/ annotation
- recombination models
- phylogenomic tools

- Community structure/ dynamics
- models of natural selection/ migration

- Physical/Biological environmental models
- PDE- based
- diffusion/reaction
- flows
- fitness/replicators (Darwin project)

Metabolites

- interpret mass spectra
- metabolic reconstruction from genomes
- high-res (intracellular)/highlevel (environmental) metabolic models

Inverse problem of "what metabolisms are active—and where?"

quantitative ecosystem models

predictive dynamics

validate against transcriptomics/dynamics

Populations, Communities, Ecosystems and Evolutionary

Owen White Director of Bioinformatics Institute for Genome Sciences, University of Maryland School of Medicine

Research Interests

- NIH Human Metagenomic Project Coordination
- Genome Standards, interoperation
- Genomic/metagenomic annotation systems

- VM-based genomic and metagenomic analysis systems
- Data-intensive cloud computing
- Consensus annotation